NOW ELECTRIC GADGETS WILL NOT BREAK EVEN IF HIT WITH A HANNER

UNBREAKABLE GADGETS

- Scientists discovered new material, the more force applied on it, the stronger it will behave.
- Now smartwatch bands, wearable sensors and health monitoring electric gadgets will not break even if hammered or pulled.

• Scientists at the University of California have invented a material which cannot be broken even by pulling or slamming.

- Apart from this, human organs can also be printed with the help of 3D printer from this material.
- It follows the principle of adaptive durability.
- Materials made from this will not get damaged even in harsh environments.
- The more force is applied on them, the more tough they will show behaviour.

Physical organ model

Replicating the Shape and structure

Mimicking the mechanical properties

Without biological activity

purpose

3D printing

-

- **Doctor-patient Communication** •
- Intraoperative navigation
- Performing experiments •
- Preoperative planning ٠
- Simulating operations
- Medical education •
- Device testing ٠
- Training skills

Real organ

Bioactive Tissue model

Simulating tissue microenvironment

Imitating tissue structure

Biological active

purpose

3D

bioprinting

Cell reactions

- Cell therapy
- In situ detection
- Drug screening
- Local tissue filling
- Tissue regeneration
- Organ transplantation

- The material is inspired by edible corn-starch
- The new material is actually inspired by corn starch used in cooking.
- A solution of corn starch mixed with water acts as a liquid when applied slowly and with low force, and acts as a solid when punched and punched rapidly.
- This difference in the behaviour of this material is due to the size difference of its particles.

rch orn

NEWTONIAN FLUIDS

NON-NEWTONIAN FLUIDS

Visit www.PEDIAA.com

NEWTONIAN FLUIDS

Newtonian fluids are fluids that obey Newton laws of constant viscosit

.

Viscosity remains constant regardless of the magnitud of the applied stress or the rate of deformation

Exhibit a linear relationshi between the shear stress ar the rate of deformation

Water, glycerol, alcohol, and mineral oil are a few examples

VERSUS

	NON-NEWTONIAN FLUIDS
's y	Non-Newtonian fluids are fluids that do not have constant viscosity
it le e	Viscosity can vary depending on the magnitude of applied stress
ip nd	Exhibit a nonlinear relationship between shear stress and shear rate
	Emulsions, suspensions, and gels are a few examples

- Scientists want to make polymer using this theory.
- Researchers also want to use this theory with polymers, from which these wearables can be made.
- Scientists are using congested polymers, which help in conducting electricity while remaining soft and pliable.

- New material made from four polymers
- Scientists have created by combining :
- Poly(2-acrylamido-2-methylpropanesulfonic acid),
- small molecules of polyaniline
- sulphonate (PEDOT:PSS)

and large molecules of high conductor poly(3,4-ethylenedioxythiophene) polystyrene

- When less force was applied on it, its shape and size changed, but when the force was increased, the material started behaving more rigidly.
- By increasing the amount of PEDOT:PSS to 10%, its adoptive durability and conductivity also increased.

- Metabolites of materials act as shock-absorbers
- Super small metabolites are made by combining two positively and two negatively charged polymers.
- These metabolites, like shock-absorbers, absorb any impact without breaking. Actually, this material is very soft and flexible.